If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-16n=0
a = 4; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*4}=\frac{0}{8} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*4}=\frac{32}{8} =4 $
| 9(g)-13=115/5 | | 2(w+6)=20 | | 12=7(y+4)-3y | | (x-5)(-x-5)=0 | | 1/3y−2=y+2 | | -3(6n+7)=9-n | | 12=7(y+4)-37 | | 1/3y-2=Y+2 | | (6x-17)=(4x+23) | | 6(w-4)+2w=16 | | (6x-9)(x-13)=0 | | 1/3x−2=x+2 | | 6b^2+11b-7=0 | | {1}{4}p-6=-8 | | 18-(3x+5)=5(x-1)-6= | | (-x-3)(2-x)=0 | | -7x-89(1+x)=-4x-9 | | 24=7(x+2)-2x | | -7x-8(1+x=4x-19 | | -4x-4=7(1x+4) | | m^2+14+49=0 | | 0.8n+3=7.8 | | (8x-3)x=0 | | {1}{6}t+1=3 | | -4x-4=7(x+4) | | 3x+1=55-6x | | 5u2−4u−7=0 | | 4x+8=4(x=4) | | 75-9(7)=x | | -{1}{6}t+1=3 | | n-3+3=11=2n-6=8 | | x/2+x/3=x/4+2 |